samedi 6 septembre 2014

LES ORIGINES DE LA VIE II

L’origine de la vieEcologie Radicale Information:

                                               Les Origines de la VIE  (document 2)
(Colloque international de l’AEIS -  5 et 6 février 2014)
(synthèse partielle par Françoise DUTHEIL)


Conditions d’apparition de la Vie  (suite)

La formation des éléments chimiques dans l’Univers
La théorie de la nucléosynthèse interstellaire a émergé au milieu du XXème siècle.
Les étoiles massives (plus que 10 masses solaires) synthétisent durant leur évolution les éléments  lourds, du Carbone au Calcium, qu’elles éjectent dans le milieu interstellaire lors de leur explosion finale en supernova. Durant l’explosion, une grande quantité des isotopes du pic du Fer  (du Titane au Zirconium) est également produite.
Les étoiles intermédiaires (de 2 à 10 masses solaires) produisent d’importantes quantités d’Hélium et certains isotopes (Carbone, Azote et Oxygène) ainsi que des isotopes plus lourds  que le Fer. Les vents stellaires  les expulsent  dans le milieu interstellaire.
Les noyaux plus lourds que le Fer sont produits lors des explosions des étoiles massives par un processus  à l’origine des noyaux naturels les plus lourds (Thorium et Uranium).
Des millions d’années plus tard, de la condensation des nuages de gaz interstellaires vont naître  de nouvelles étoiles enrichies en éléments lourds, ainsi que des systèmes planétaires autour d’elles.

L’environnement terrestre de la Vie
Sur  Terre le passage de la matière à la Vie se fit dans l’eau, il y a environ 4,4 milliards d’années, avec la chimie du Carbone et des molécules organiques capables d’autoreproduction et d’évolution.
On pourrait définir la Terre comme « une zone habitable avec de l’eau liquide ».
La Terre a hébergé de l’eau très tôt car elle avait la bonne taille et se trouvait à la bonne distance du Soleil.
[L’eau est une denrée rare des planètes du système solaire et la Terre a eu de la chance d’en recevoir suffisamment pour que la tectonique des plaques puisse devenir son régime géodynamique et que la Vie puisse s’y développer.  Les planètes du système solaire sont en général très sèches, non qu’elles aient perdu de l’eau, mais plutôt parce que la température qui régnait à cet endroit de la nébuleuse ne permettait pas la condensation des éléments les plus volatils, tel que l’eau.
Bien après la formation de la Terre et l’impact  géant qui a formé la Lune, des apports astéroïdaux ont compensé ce déficit de façon très inégale d’une planète à l’autre. L’eau est une substance qui ne doit son importance qu’à son faible poids moléculaire et sa volatilité permet d’appuyer l’hypothèse d’une origine exotique de l’eau dans une phase ultime qui a noyé la Terre : il s’agit d’une pluie de matériaux en provenance de petits astéroïdes chargés d’environ 20% d’eau.
La Lune est très appauvrie en éléments volatils (Hydrogène, Oxygène, Azote) et est considérée comme un astre sec.]
L’eau est indispensable à la Vie et a des vertus exceptionnelles dues  à la densité du réseau de liaisons Hydrogène. Autrement, comparée au Carbone par exemple (0,094%) ou au Silicium, l’eau devrait être un gaz à la surface de la Terre.
Sur la Terre soumise à d’intenses  bombardements de météorites, l’eau et le  Carbone nécessaires à la Vie, ont pu être partiellement apportés par de gros astéroïdes. La première atmosphère   était riche en gaz carbonique et en eau, pauvre en méthane ; le passage à des quantités importantes d’Oxygène est dû à l’action ultérieure de la matière vivante.
On a de bons  arguments pour voir les premiers indices de la Vie dans des fossiles, édifiés par des bactéries anaérobies, il y a 3,5 milliards d’années, dans les premières roches sédimentaires,  encore visibles aujourd’hui.  Ainsi, la Vie est apparue « relativement vite » !
Un choix doit être fait  entre les différentes hypothèses concernant le lieu  où la Vie est apparue : dans les cheminées hydrothermales profondes (les bactéries dans les sources thermales ont le même code génétique que nous) ? Sur des surfaces minérales (argiles ou sulfures métalliques) servant de catalyseurs ? ou encore à partir d’une soupe primordiale « prébiotique » ?
Il n’y a pas aujourd’hui de réponse unique et satisfaisante. Parfois, on ne dépasse guère le Timée ! Nous sommes dans cette situation où la multiplication des événements improbables conduit à penser que leur explication est « hors de notre portée ». Il y a un abîme entre  la complexité, déjà grande, d’un génome et celle de l’être vivant. Il faudrait, au minimum, avoir bâti une cellule origine et que celle-ci se reproduise  dans un environnement nourricier favorable.
On peut étendre  la question de l’origine de la Vie à toutes les planètes de l’Univers accessible : si on admet l’hypothèse optimiste que cet Univers – par nature fini -  se compose (simples ordres de grandeur) de 10 12 galaxies de 1012 étoiles et qu’une étoile sur 10 est capable d’avoir une planète  aux conditions favorables à la Vie, on ne multiplie la probabilité  de l’apparition de la Vie dans l’Univers, par rapport à l’apparition sur la seule Terre,  que par 10 12+12+1 = 1025  « seulement » ;  ce n’est rien par rapport aux échelles de probabilité de 10 -200 envisagées !
Notons que même les probabilités les plus fantastiquement faibles, peuvent se réaliser lorsque l’on y introduit l’infini (qu’il s’agisse  d’un Univers infini où d’une infinité d’Univers possibles).
Si l’apparition de la Vie sur terre est très improbable combien plus le serait son apparition répétée. Autrement dit : tous les êtres vivants,  quelles que soient leurs espèces, descendent d’un ancêtre unique.
(L’idée que la Vie viendrait directement d’autres parties de l’Univers, où la Vie était déjà installée, relève de la science-fiction).


L’origine de la Vie proprement dite
Quelles que soient les probabilités, il y a eu un instant unique et il y a un consensus pour estimer que  toutes les espèces actuelles partagent la même origine :  il y a eu un premier être vivant sur la Terre.  Il était  forcément unicellulaire, se reproduisant par division cellulaire ; il possédait l’essentiel des protéines ribosomiques communes aux 3 classes successives : les bactéries, les archées et les eucaryotes ; son code génétique était voisin du nôtre.
Il marque la première divergence majeure – il y a 3,2  à 3,5 106 ans – dans  la succession des êtres vivants, généralement considérée comme ayant fait se détacher les archées des bactéries, première forme de la Vie. Le « changement  évolutif majeur »  est le suivant : une bactérie unicellulaire se divise en deux,  la nouvelle cellule est la base des archées. Ainsi, compte tenu de l’extrême improbabilité de ce processus, le concept théorique  s’incarne en un individu unique !
Les premiers êtres vivants qui ont été repérés étaient déjà dotés de structures et de mécanismes complexes, mais essentiels et communs à toute leur descendance : il nous faut donc penser qu’ils étaient nécessaires à la Vie.

La Vie est constituée d’un ensemble  de macromolécules géantes dites « protéines », contenant 20 acides aminés dont l’ordre est défini par une portion (que l’on nomme gêne) de molécule géante  d’acide désoxyribonucléique (ADN).
C’est  l’assemblage des 20 acides aminés qui constituent la biodiversité
Aujourd’hui, l’ARN simple brin est maintenant privilégié pour un « début » car, en plus du rôle de détenteur de l’information génétique qu’il partage avec l’ADN,  il a aussi des propriétés de catalyse qui ont pu permettre l’apparition des premières  protéines. On admet  que ces protéines  ont été produites  sans intervention d’un code génétique, par la formation statistique de séquences peptidiques ; elles sont peu stables ; les mécanismes qui les ont produits sont obscurs.
L’ADN est représenté par une double hélice très mince dont la forme déroulée est celle d’une échelle. La division cellulaire est la séparation de 2 brins de la double hélice.
A chaque sucre de l’un des brins correspond une base adénine/ thymine / guanine / cytosine. Les échelons de l’échelle sont constitués d’une  paire adénine/thymine, et d’une paire guanine/cytosine.
1 bactérie = 1,5 106 paires de base
1 Homme = 3,5 109 paires de base
Le groupement des bases 3 par 3 (triplet) constitue un code ternaire redondant qui est le « code génétique », définissant 1 aminoacide sur 20.  Multiplié par 20, il forme une protéine qui se construit progressivement.
Le génome est l’ensemble des gênes.  Toutes les cellules d’un même organisme ont le même ADN dans leur noyau.
Les gênes sont  groupés  en chromosomes qui se transmettent de génération en génération. Les enfants  peuvent recevoir 23 paires de chromosomes du père x 23 chromosomes de la mère, soit 10combinaisons possibles. Un couple de gênes est transmis au hasard de cette probabilité à l’enfant qui de ce fait est un être entièrement nouveau.
La division cellulaire correspond à la séparation de deux brins de la double hélice ADN, entrainant la reconstruction, élément par élément, du brin complémentaire de chacun des deux brins. L’ADN se reproduit à l’identique : il s’agit d’une molécule autoreproductrice.
Il est impensable qu’une telle macro- molécule ait pu se former par l’assemblage fortuit d’atomes de Carbone, d’Hydrogène, d’Azote, d’Oxygène et de phosphore contenus dans l’océan primitif. D’où l’hypothèse d’une molécule d’autocatalyse dont le premier réplicateur serait né il y a 4 milliard d’années. Le réplicateur se serait entouré d’une membrane pour s’isoler de son environnement (car il y a eu compétition dans l’espace entre la protodestruction par les UV et la condensation). Une évolution darwinienne complexe aurait abouti aux bactéries et algues monocellulaires il y a 3 milliards d’années.
Le continuum depuis 4 milliards d’années serait donc le suivant :
-         le monde ARN, précédant le monde ADN
* les viroïdes
* les virus, biomasse la plus importante des océans (8% du génome humain provient de virus et n’est donc pas hérité de nos ancêtres vertébrés)
* la lignée cellulaire et les protéines (régulées par une série de réseaux épigénétiques)
-         le monde prébiotique qui correspond à une phase d’accumulation et annonce le couplage dans le  monde pré-ARN compartimenté
-         la sélection naturelle :
*ARN nu
*ARN compartimenté
*virus
* lignée cellulaire
* 1ère bactérie procaryote (1 seul compartiment)
* vie interstellaire
* cellules eucaryotes

Mais quelle serait l’origine des molécules et des fonctions  biologiques ?
Hypothèse 1 : la soupe prébiotique (océan primitif)
Les briques du vivant se sont formées dans l’atmosphère et se sont déposées dans l’océan primitif (vésicules, vapeur d’eau + molécules) entrainant l’explosion d’acides aminés sous l’effet d’étincelles électriques. Elles peuvent provenir de météorites contenant des composés organiques solides ;
Hypothèse 2 : les surfaces minérales, argiles ou sulfures métalliques auraient participé à la production de molécules biochimiques-clés (exemples : les réactions sur les parois volcaniques sous-marines à  -11.000 m, ou bien en surface tel que dans le parc de Yellowstone.
Ces Hypothèse, 1 ou 2,  sont issues de la soupe primitive.

Le professeur Pierre JOLIOT conclut magistralement ce colloque en le qualifiant de « première étape d’un projet universel ». La suite : détecter une vie extraterrestre, sera le grand enjeu du XXIème siècle.

                                         

                                                    ANNEXE I  
La Chronologie de l’Univers ( -15 109 ans)
On peut la résumer ainsi, de l ‘explosion d’une étoile au gêne :
-         systèmes planétaires : - 4,6 109 années
-         l’eau d’abord en phase vapeur autour de la Terre, se condense et forme les océans =   - 4, 4 109 années
-         la terre subit un dernier gigantesque cataclysme, déluge de météorites (22 000 cratères estimés) = - 3,9 109 années
-         réactions des éléments pour former les briques du vivant (bases azotées, acides nucléiques) =  - 3,8 à - 3,6 10années
-         bactéries procaryotes à un seul compartiment = - 3,6 10années
-         cellules eucaryotes = - 1,6 109 années
-         organismes multicellulaires = - 600 106 années
L’explosion de la biodiversité résulte des bactéries de l’eau (algues bleues) qui piègent le Carbone du Calcium. La sexualité des bactéries conduit à l’échange de matériaux génétiques an quelques millions d’années.

Le monde de l’ARN (qui aurait précédé le monde de l’ADN) serait le suivant de par la sélection naturelle :
-         ARN nu
-         ARN compartimenté
-         Les viroïdes
-         La lignée cellulaire
-         La 1ère bactérie procaryote (1 seul compartiment)
-         La vie interstellaire
-         Les cellules eucaryotes
ANNEXE II
                   Quelques Références des orateurs
-         OZOU Cyrille, Ecole des HE en sciences sociales, Centre Alexandre Koyré, Paris
-         BERTOUT Claude, Exoplanètes, Pour la Science, dossier n°64, juillet-septembre 2009
-         YOUNG Eric, Astronomie, Pour la Science n° 401, mars 2011
-         BRAHIC André, extrait de « de feu et de glace », Odile Jacob 2010
-         BRAHIC André, « Les enfants du Soleil », Odile Jacob
-         LE SERGENT d’HENDECOURT Louis,  « de l’Astrochimie à l’Astrobiologie : pour une approche méthodologique » CNRS et SFE
-         BRACK André,  « de l’origine de la vie sur Terre à la vie dans l’Univers », chercheur au sein du CNRS, de l’ESA et de la NASA, 2012
-         BRACK André, « la vie dans l’Univers : de la chimie à l’astronomie », Cahiers Clairaut Novembre 2011
-         OLLIVIER Marc, « Exoplanètes et recherche de la vie », Astronome à l’Institut d’Astrophysique Spatiale d’Orsay, 2012
-         ENCRENAZ Thérèse, « du système solaire aux systèmes planétaires », Directrice de Recherche émérite au CNRS, 2013
-         DERENNE Sylvie, « preuve moléculaire d’existence de la vie dans le dépôt siliceux vieux de 3,5 milliards d’années de Warrawoona », Earth and planetary  Science Letter 272 (2008)
-         BEN AMAR Martine, « morphogénèse et embryogénèse », professeur à l’Université Pierre et Marie Curie-Paris 6
-         STAHL Alain, « Science et philosophie », 2013
-         GUERIN Maryvonne, « les molécules interstellaires : de merveilleux outils », Laboratoire de Radioastronomie du LERMA (ENS)

 Françoise DUTHEIL

mardi 2 septembre 2014

LES ORIGINES DE LA VIE I

L’origine de la vie

                                                               l'Origine de la Vie

Vous trouverez ci-dessous une synthèse partielle du Colloque international tenu les 5 et 6 février 2014 par l’Académie Européenne Interdisciplinaire des Sciences (AEIS) à l’Institut Raymond Poincaré à Paris.
-         le document 1 ci-après concerne la formation des systèmes stellaires et planétaires
-         le document 2 qui suivra concerne les conditions d’apparition de la Vie

Françoise DUTHEIL

                                       
Formation des systèmes stellaires et planétaires (document 1)
(Colloque international de l’AEIS -  5 et 6 février 2014)
(synthèse partielle par Françoise DUTHEIL)

Pour   comprendre la notion d’ « origine », il faut sans doute en premier lieu la séparer du « commencement ». C’est cette ambiguïté que le philosophe Karl JASPER a perçue et veut écarter quand il précise [1] la distinction entre l’origine et le commencement. Parlant de la philosophie, il dit que son commencement s’inscrit dans le temps. C’est le début d’un processus historique, ce qui n’est pas le cas de son origine qui est la fontaine d’où surgit constamment l’impulsion à philosopher.  En confondant l’origine et le commencement, on identifie le fondement et le fondé, le principe et le phénomène.
L’idée du commencement entre en fait en conflit avec l’idée de l’infinité du monde dans le temps et dans l’espace, qui est une idée pure; et ce conflit est assoiffé de démonstration. L’idée d’un monde  infini prétend connaître cette  cause infinie qui lui échappe pourtant :  dater la Vie, est-ce connaître son origine ?

L’étude de nos origines est reconnue comme l’un des plus grands défis scientifiques du XXIème siècle, et combine de nombreux aspects de la connaissance scientifique :
-         quelle succession d’événements a conduit à la formation des planètes ?
-         quels processus ont permis l’apparition de la vie sur notre Terre ?
-         existe-t-il d’autres systèmes sur lesquels une forme de vie pourrait se développer ?
Depuis la découverte en 1995 de la première planète extrasolaire, de nombreuses autres exoplanètes (plus d’un millier) ont été  trouvées dans des configurations qui soulèvent  de nouvelles questions sur la formation des systèmes planétaires. De plus, les missions spatiales de ces dernières années ont permis de mieux comprendre la formation du système solaire. Alors que  la Vie sur Terre se révèle d’une extraordinaire diversité, les progrès récents en « astrobiologie » permettent d’envisager la recherche d’indices de la présence de la Vie sur des exoplanètes comparables à la Terre, d’ici une ou deux décennies.

Les étoiles naissent de l’effondrement d’un nuage de gaz et de poussières
Le ballet céleste des corps du système solaire paraît étrangement ordonné et   Pierre Simon Laplace  [2] le notait déjà en 1796. Comment expliquer une telle coordination entre des dizaines de corps distants de centaines de millions de kilomètres ?
Une étoile et son disque  compagnon, naissent (classe 1) dans des systèmes denses d’une  nébuleuse de gaz et de poussière flottant dans l’espace, en rotation sur eux-mêmes.  Cette poussière est-elle la matière primordialeà peine altérée depuis le Big-Bang ? 
Si une petite région du nuage – nommée cœur – est suffisamment froide et dense,   sa propre gravité l’emporte sur  la pression du gaz et il commence à s’effondrer sous son propre poids (classe 2). Le cœur devient de plus en plus dense et chaud. Une étoile de classe 3 atteint la température  de fusion de l’hydrogène en hélium. La chaleur dégagée  par la fusion augmente la pression, laquelle s’oppose à l’effondrement.   Une partie de la matière forme  l’étoile,  (on parle d’étoiles naines qui représentent l’immense majorité des étoiles et incluent le Soleil) tandis que le reste s’accumule par accrétion dans le disque protoplanétaire.
Un champ magnétique faible est présent partout.
Parallèlement, deux jets symétriques  de matière sont émis par les pôles  à quelques dizaines de kilomètres par seconde. Ces jets  s’étendent sur des distances considérables, jusqu’à plusieurs années-lumière de l’étoile dont ils sont émis, contribuant à entretenir la turbulence du nuage moléculaire.
Au bout d’une moyenne de 2 millions d’années, la  nouvelle étoile, désormais visible, s’installe dans un équilibre dynamique qui peut durer des millions à des milliards d’années.
A noter que seul un tiers  de la masse d’un nuage se retrouve  dans la nouvelle étoile. Le reste se perd  dans l’espace.
Si vous  regardez le ciel par une nuit bien noire, vous pouvez voir la trainée de lumière diffuse de la Voie Lactée. Elle est interrompue  par des zones sombres : ce sont des nuages interstellaires dont les particules  de poussière interceptent la lumière des étoiles et les rendent opaques à notre vision. C’est dans ces nuages de poussière que naissent les étoiles,  phénomène donc  caché depuis la Terre.
Les étoiles massives sont rares et ne vivent pas longtemps, mais elles jouent un rôle très important dans l’évolution des galaxies. Elles injectent de l’énergie dans le milieu interstellaire à la fois par leur rayonnement et par le flot de matière qu’elles éjectent. A la fin de leur vie, elles explosent en supernovae, restituant de la matière enrichie en éléments lourds. La Voie Lactée est criblée de bulles et de vestiges de supernovae crées par ces étoiles.
En effet au départ, le gaz se trouve sous forme d’atomes, car le rayonnement énergétique des étoiles casse aussitôt les molécules. Il est diffus, avec environ 1 atome d’hydrogène par cm3. Nouvelle étape : en se refroidissant le gaz se condense néanmoins en nuages, comme la vapeur d’eau le fait dans notre atmosphère. Ce faisant, il libère de l’énergie. Le milieu étant très peu dense,  cette énergie ne peut être évacuée par collisions ;  le moyen est l’excitation et la réémission dans l’infrarouge lointain de certains éléments tels le Carbone ionisé à des longueurs d’ondes   auxquelles l’atmosphère terrestre est opaque (158 micromètres).
A mesure que les nuages se refroidissent, ils deviennent plus denses. Quand ils atteignent environ 1000 atomes par cm3, ils sont assez épais pour bloquer le rayonnement ultraviolet énergétique des étoiles environnantes. Les atomes d’hydrogène peuvent alors se recombiner et former des molécules.
Ces nuages turbulents dits « moléculaires » contiennent des composés allant de l’Hydrogène moléculaire aux molécules organiques  qui auraient pu jouer un rôle dans l’apparition de la Vie sur Terre. Mais au-delà de ces étapes, la piste s’efface.
Chacune de ces découvertes   pose encore question aux astrophysiciens, telle : d’où viennent les nébuleuses  gazeuses à  l’avènement  de l’étoile ?  D’un mélange de matériaux produits lors du Big-bang ?  C’est l’éternel débat de l’inné et de l’acquis…à l’échelle cosmique !  Tant qu’ils ne le comprendront pas,  les astronomes ne peuvent pas espérer expliquer l’existence » de planètes dans d’autres systèmes stellaires.

La Formation des Planètes et du système solaire
Les  astronomes ne se sont mis d’accord que vers les années 1980 sur les grandes étapes de la formation des planètes : une nébulosité s’est isolée dans le milieu interstellaire et s’est effondrée sur elle-même. Le centre a donné naissance au Soleil et un disque est apparu  dans le plan équatorial du Soleil. Ce jeune Soleil a commencé sa vie en se contractant, jusqu’à sa taille actuelle. Il était alors si chaud que le disque était initialement à l’état gazeux.
Au moment où les réactions thermodynamiques de fusion de l’Hydrogène en Hélium ont démarré, le Soleil avait alors acquis une source d’énergie pour des milliards d’années, mais il était plus froid que lors de l’étape précédente. Le gaz refroidi s’est alors solidifié en grains d’une taille de quelques microns à quelques millimètres. Dans ce disque de grains issu du disque gazeux, des instabilités  d’une taille d’environ 500 mètres sont alors apparues pour former des planétésimaux qui ont subi de très nombreuses collisions mutuelles. Quand elles étaient violentes, les planétésimaux ont été  brisés en morceaux. Quand elles étaient douces, ils se sont rassemblés pour former des corps plus gros. Cette succession de fragmentations et d’accrétions a fait apparaître un disque d’embryons qui a succédé au disque de planétésimaux. Ces embryons ont typiquement une taille de l’ordre de  quelques centaines de kilomètres. Les interactions et les collisions entre tous ces embryons ont conduit aux disques des 8 planètes que nous connaissons aujourd’hui.
Ce mécanisme a donc été très efficace pour former les 4 planètes telluriques que sont Mercure, Vénus, la Terre et Mars.
Il est très différent pour les 4 planètes géantes : Jupiter, Saturne, Uranus et Neptune. Elles sont entourées d’anneaux et de nombreux satellites. Situées loin du Soleil, elles baignaient dans un gaz d’Hydrogène et d’Hélium, qui représente 99% de la masse du milieu interstellaire.
En effet, les éléments les plus légers  comme l’Hydrogène et l’Hélium sont animés de mouvements d’agitation d’autant plus rapides que la température est plus élevée. C’est ainsi que les molécules d’Azote et d’Oxygène  que vous respirez à l’instant  s’agitent à 1800 km/h dans l’air qui vous entoure. Elles filent à des vitesses supersoniques.
Quand on s’approche du Soleil, la température augmente et les éléments légers (près du Soleil, quelques centaines de degrés Kelvin) se sont évadés avant même que les planètes n’aient été formées. Comme 99%  de la nébuleuse primitive était composée d’Hydrogène et d’Hélium, les planètes les plus proches du Soleil se sont formées à partir de résidus et leur masse est beaucoup plus faible que celle des géantes. Elles ont été fabriquées à partir d’éléments plus lourds tels que le Silicium, le Carbone, l’Aluminium, le Calcium, le Magnésium, le Fer et d’autres qui, combinés avec l’Oxygène, forment les minéraux et les roches.
Il n’y a pas d’anneau autour de la Terre, tout simplement parce qu’il n’y avait pas suffisamment de matériau disponible autour d’elle.
Les planètes terrestres, qui n’ont ni Hydrogène ni Hélium, ni anneau, ni systèmes de satellites, pourraient nous paraitre comme de pauvres débris peu intéressants si nous n’habitions l’une d’entre elles : la TERRE.
Les planètes géantes ont été formées loin du Soleil, et les très basses températures (de -240 à -150° Celsius), n’ont pas permis  aux gaz légers de s’évader. La composition des planètes est alors proche de celle de la nébuleuse de gaz primitive qui est l’ancêtre commun du Soleil et des planètes. Contrairement à la Terre, elles ont conservé toutes les glaces et tous les gaz légers initialement présents. Elles sont gazeuses et on ne rencontre pas de croute solide. 
Les planètes telluriques, situées dans la chaleur du jeune Soleil, n’ont pas rencontré de gaz et ont une croute solide. Elles ont été assemblées à partir d’un matériau beaucoup moins abondant. Après des débuts agités, un monde harmonieux a pu apparaître.

La Formation de la Terre
La plus grosse des planètes telluriques est la Terre, avec un rayon de 6.378 km, énorme  à l’échelle humaine,  mais pourtant dix fois plus petite que Jupiter et 100 fois plus petite que le Soleil.
Si la Terre a cette position, cette masse et ce mouvement, et si la VIE a pu s’y développer, c’est grâce à la plus grosse planète, Jupiter,  car il semble que Jupiter ait été formé  en premier dans la genèse des autres planètes.
La Terre, probablement issue (avec la Lune) de la collision de deux planètes dans une catastrophe majeure, s’est solidifiée il y a 4,4 milliards d’années.
En effet, à environ 800 millions d’années après sa naissance, toutes les planètes et les satellites ont été criblés  par une multitude de projectiles  de toutes tailles. La Lune en garde encore  de nombreuses cicatrices qui ont permis de dater l’événement. Cet épisodeappelé le « Grand Bombardement tardif », est contemporain de l’apparition de la VIE sur Terre. Certains pensent même que ce bombardement a joué  un rôle important en y apportant du  matériau indispensable à la Vie en fragilisant la croûte terrestre, et en permettant le démarrage de la dérive des continents.
La théorie la plus reconnue aujourd’hui, d’après un scénario de collision,  est qu’un corps de la taille de Mars  aurait heurté  la Terre, projeté des débris aux alentours, qui se seraient ensuite assemblés pour former la Lune.

                   … à suivre document 2 : les conditions d’apparition de la Vie…

Françoise DUTHEIL

vendredi 23 mai 2014

POEME A MA PETITE FILLE

A ma petite fille Ainhoa

Poème
Petit être source de joie, tu es un magnifique cadeau de la vie, comme un magnifique printemps venant illuminer nos vies. Je te dédie ce poème pour te montrer tout l'amour que je te porte.

Magie de ta naissance,
Ange arrive dans nos vies

Petite fille magnifique
Etre parfait et sublime

Tout n'est que bonheur
Immense joie et gaieté depuis

Ton arrivée parmi nous
Enfant prodige tant attendu

Formidable allégresse
Intense tendresse ressentie

L'amour d'un grand-père
Le lien filial qui nous unis

Eternité de ces sentiments.


jeudi 15 mai 2014

CROCODILE TUEUR

Image associée

Image associée
Le tueur no 2 aprés la méduse maison,le crocodile
La pêche au gros...

Frisson garanti, personne sensible s'abstenir!

A l'époque du dinosaure, le crocodile existait déjà. Il a survécu et vit dans des régions humides et chaudes des continents de la planète. C'est un redoutable prédateur, d'une puissance hors du commun. Le plus grand spécimen se trouve en Australe, dans la mer.

Le crocodile d'Australie est un prédateur énorme. Il peut mesurer jusqu'à 9 mètres de long et peser 2 tonnes.

Aprés la méduse maison il est le prédateur le plus dangereux pour l'Homme. On le rencontre en mer , il est un excellent nageur, et nage jusqu'à 6000 km des côtes.
Il se nourrit de tout ce qu'il trouve y compris l'homme.

Vu sa taille imposante, il est recommandé de l'éviter si vous êtes sur une plage Australienne.


http://dai.ly/xxxxv2
Crocodile tueur d'homme capturé


Méduse maison , le tueur no 1
Le plus redoutable prédateur de l'homme, en trois minute le venin de cet animal suffit pour vous enlever la vie.



Le plus grand anaconda qui a tué une femme

GISLEY BEAUTY STAR

mercredi 14 mai 2014

FRISSON GARANTI


La pêche au gros...

Frisson garanti, personne sensible s'abstenir!


Le crocodile d'Australie est un prédateur énorme. Il peut mesurer jusqu'à 6 mètres de long et peser 2 tonnes.

Aprés la méduse maison il est le prédateur le plus dangereux pour l'Homme. On le rencontre en mer , il est un excellent nageur, et nage jusqu'à 6000 km des côtes.
Il se nourrit de tout ce qu'il trouve y compris l'homme.

Vu sa taille imposante, il est recommandé de l'éviter si vous êtes sur une plage Australienne.


http://dai.ly/xxxxv2
Crocodile tueur d'homme capturé


Méduse maison , le tueur no 1
Le plus redoutable prédateur de l'homme, en trois minute le venin de cet animal suffit pour vous enlever la vie.


Le plus grand anaconda qui a tué une femme

mardi 13 mai 2014

LE POUVOIR


SIMON BOLIVAR (1783-1830) 













MANUELA SAENZ

Comment un leader peut-il perdre son pouvoir et succomber? 

Quelles erreurs peut-il commettre au point de l'anéantir?

Voici quelques commentaires sur le pouvoir, sur le fait d'être ou de travailler prés du pouvoir ou sous celui-ci, c'est-à-dire d'un leader ou quelqu'un exerçant une influence vaste et primordiale sur les affaires des hommes


Simon Bolivar fut le libérateur de l'Amérique du Sud et délivra celle-ci du joug de l'Espagne.





Manuela Sainz fut la libératrice et sa compagne

Simon Bolivar était un personnage trés puissant. Le meilleur chef militaire de tous les temps. C'était l'un des hommes les plus riches d'Amérique du Sud. Il possédait des capacités personnelles qui ne sont données qu'à quelques hommes sur cette planète. Pourtant il échoua et 

mourut en exil sans un sou.

Manuela Sainz était une femme brillante, belle et capable. Elle était loyale et dévouée, trés comparable à Bolivar, bien au-dessus de l'humanoide moyen. Alors pourquoi a t-elle vécu exclue et calomniée?


Ces deux personnages remarquables ont inévitablement commis des erreurs, ce qui les ont précipité dans le fossé.


Sur le plan personnel, Bolivar manquait totalement de perspicacité. Il ne pouvait voir que les apparences, et même dans ce cas, il n'observait ni n'écoutait. Il arrangeait les choses par son charisme. Ce qui est pitoyable, c'est que le fait qu'il en fût capable causa sa perte... jusqu'à ce qu'il n'en fût plus capable.


Sa perte vint de l'usage abusif d'un talent, simplement parce que c'était facile! Il y était trop bon. C'est pourquoi il n'eut jamais recours à d'autre talent et il ne songea même pas un seul instant qu'il puisse exister d'autre façon de faire.


Bolivar n'avait aucune compétence financière personnelle. Il commença fortuné et finit dans la misère, sa statistique passant de celle de l'un des hommes les plus riches de l'Amérique du Sud, si ce n'est le plus riche, à celle d'un homme en exil, enterré dans une chemise de nuit d'emprunt. Et cela, alors que les terres des royalistes étaient à portée de main; les plus grands domaines et les plus grandes richesses minières d'Amérique du Sud étaient à portée de main, incroyable! Mais vrai. Il ne demanda jamais le remboursement de l'argent qu'il avait prêté aux gouvernements, même lorsqu'il fut à leur tête.

Aussi, il n'est pas étonnant que nous trouvions deux autres graves erreurs menant à sa chute: il ne récompensa pas ses troupes ni ses officiers et n'essaya pas de rendre solvable les Etats dont il avait pris le contrôle.


Il ne sut jamais reconnaître une personne mal intentionnée et ne considéra jamais qu'il fût nécessaire de tuer quelqu'un, sinon sur un champ de bataille. Là, c'était glorieux. Pourtant quelqu'un s'employa à détruire son nom et son âme, ainsi que la sécurité de tous ses partisans et amis : la personne mal intentionnée (le psychotique) Santander, son vice président, que n'importe quel peloton de caporaux aurait pu arrêter et exécuter sur le centième des preuves existantes, Santander qui réussit à détourner l'ensemble des finances publiques et à retourner la population contre Bolivar sans que celui-ci, constamment mis en garde, preuve à l'appui, ne lui adressât jamais la moindre réprimande. Et ceci provoqua sa perte de popularité et finalement son exil.


Il omit également, de la même façon, de protéger son état-major et Manuela Sainz contre ses autres ennemis. Il affaiblit donc ses amis et ignora ses ennemis, par simple négligence.


Bolivar accordait une grande importance aux honneurs. Etre aimé était sa vie. Et sans doute était-ce plus important pour lui que de veiller à ce que les choses marchent vraiment bien.Il ne transigeait jamais avec ses principes, mais il vivait d'admiration, un régime plutôt malsain puisqu'il exige alors une  << mise en scène  >>  permanente. On est ce que l'on est, et non pas ce pour quoi on est admiré ou hai. Celui qui se juge d'après ses victoires ne fait que constater que ses postulats ont marché et cela développe la confiance en ses aptitudes. Mais celui qui a besoin qu'on lui dise que cela à marché ne fait que critiquer sa propre vue et tend à ses ennemis l'arme avec laquelle ils pourront à volonté porter atteinte à son orgueil. Les louanges sont agréables. C'est merveilleux d'être remercié et admiré. Mais ne travailler que pour cela ?


Et sa soif, sa dépendance de la drogue la plus capricieuse de l'histoire   -- la gloire -- causèrent la mort de Bolivar. Cette arme que l'on offre soi-même. Il faisait continuellement savoir au monde entier comment le tuer:lui faire perdre l'estime des autres. Et comme l'argent et les terres permettent d'acheter un nombre infini de cabales, il pouvait être abattu en gâtant cette estime, la chose la plus facile que vous puissiez faire faire à une foule.


Manuela Saenz



En tant que maîtresse de Bolivar, la tragédie de Manuela Saenz fut quelle ne fut jamais été utilisée, qu'elle n'eut jamais une part du pouvoir et que Bolivar ne la protégea et ne l'honora jamais.

C'était une femme intelligente, splendide, d'une fidélité et d'une compétence extraordinaires, dotée d'une intuition prodigieuse, susceptible de donner complète satisfaction et de rendre des services énormes.Mais seule sa capacité à donner satisfaction fut utilisés, et encore, pas tout le temps, ni même honnêtement.


Tout d'abord, Bolivar ne l'épousa jamais. Il n'épousa jamais personne. Cela ouvrait une brèche énorme dans toute défense qu'elle pouvait jamais ériger contre les ennemis, lesquels étaient légion. Sa première erreur fut donc de ne pas se débrouiller, d'une façon ou d'une autre, pour se faire épouser.


SANTANDER
Image illustrative de l'article Francisco de Paula Santander
Son erreur la plus fatale fut de ne pas éliminer Santander, le plus grand ennemi de Bolivar. Cela lui coûta tout ce qu'elle possédait, avant la fin et après la mort de Bolivar. Elle savait depuis des années qu'il fallait tuer Santander. Elle le disait ou l'écrivait presque tous les jours.


Elle ne fut pas suffisamment impitoyable et prévoyante pour compenser l`indulgence et le manque de prévoyance de Bolivar.


Les voies qui s'offraient à elle en matière d'argent et d'action étaient totalement ouvertes. Une avenue s'étendait à l'infini.


Elle se battit avec courage, mais ne passa pas à l'action.


Elle avait même un grade de colonel, mais ne s'en servait pas.


Elle fut actrice seulement pour la scène.


Elle en mourut. Et pour la même raison, elle laissa Bolivar en mourir.



LRH

Q - We Are The Plan